Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychophysiology ; : e14585, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594873

RESUMO

Accurate time perception is a crucial element in a wide range of cognitive tasks, including decision-making, memory, and motor control. One commonly observed phenomenon is that when given a range of time intervals to consider, people's estimates often cluster around the midpoint of those intervals. Previous studies have suggested that the range of these intervals can also influence our judgments, but the neural mechanisms behind this "range effect" are not yet understood. We used both behavioral tests and electroencephalographic (EEG) measures to understand how the range of sample time intervals affects the accuracy of people's subsequent time estimates. Study participants were exposed to two different setups: In the "blocked-range" (BR) session, short and long intervals were presented in separate blocks, whereas in the "interleaved-range" (IR) session, intervals of various lengths were presented randomly. Our findings indicated that the BR context led to more accurate time estimates compared to the IR context. In terms of EEG data, the BR context resulted in quicker buildup of contingent negative variation (CNV), which also reached higher amplitude levels and dissolved more rapidly during the encoding stage. We also observed an enhanced amplitude in the offset P2 component of the EEG signal. Overall, our results suggest that the variability in time intervals, as defined by their range, influences the neural processes that underlie time estimation.

2.
Q J Exp Psychol (Hove) ; : 17470218241245355, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38628032

RESUMO

Subjective time perception can change based on a stimulus's valence and expectancy. Yet, it is unclear how these two factors might interact to shape our sense of how long something lasts. Here, we conducted two experiments examining the effects of temporal and probabilistic expectancy on the perceived duration of images with varying emotional valence. In Experiment 1, we varied the temporal predictive cue with varying stimulus-onset asynchronies (SOAs), while in Experiment 2, we manipulated the cue-emotion probabilistic associations. Our results revealed that stimuli appearing earlier than anticipated were perceived as shorter, whereas less infrequent stimuli seemed to last longer. In addition, negative images were perceived longer than neural ones. However, no significant interaction between expectancy and stimulus valence was observed. We interpret these using the internal clock model, suggesting that while emotional stimuli primarily affect the pacemaker's rhythm through arousal, expectation steers attention, influencing how we register time's passage.

3.
Vision Res ; 220: 108406, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38626536

RESUMO

Incorporating statistical characteristics of stimuli in perceptual processing can be highly beneficial for reliable estimation from noisy sensory measurements but may generate perceptual bias. According to Bayesian inference, perceptual biases arise from the integration of internal priors with noisy sensory inputs. In this study, we used a Bayesian observer model to derive biases and priors in hue perception based on discrimination data for hue ensembles with varying levels of chromatic noise. Our results showed that discrimination thresholds for isoluminant stimuli with hue defined by azimuth angle in cone-opponent color space exhibited a bimodal pattern, with lowest thresholds near a non-cardinal blue-yellow axis that aligns closely with the variation of natural daylights. Perceptual biases showed zero crossings around this axis, indicating repulsion away from yellow and attraction towards blue. These biases could be explained by the Bayesian observer model through a non-uniform prior with a preference for blue. Our findings suggest that visual processing takes advantage of knowledge of the distribution of colors in natural environments for hue perception.

4.
Perception ; 53(4): 263-275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517398

RESUMO

Previous research has shown that state anxiety facilitates stimulus-driven attentional capture and impairs goal-directed attentional control by increasing sensitivity to salient distractors or threat cues or narrowing spatial attention. However, recent findings in this area have been mixed, and less is known about how state-dependent anxiety may affect attentional performance. Here, we employed a novel dual-target search paradigm to investigate this relationship. This paradigm allowed us to investigate attentional control and how focus narrows under different anxiety states. Participants watched a short movie-either anxiety-inducing or neutral-before engaging in the dual-target visual search task. We found that they performed faster and more accurately in trials without the salient distractor compared to those with distractors, and they performed better in tasks presented on the center than the periphery. However, despite a significant increase in self-reported anxiety in the anxiety-inducing session, participants' performance in terms of speed and accuracy remain comparable across both anxious and neutral sessions. This resilience is likely due to compensatory mechanisms that offset anxiety, a result of the high demands and working memory load inherent in the dual-target task.


Assuntos
Atenção , Objetivos , Humanos , Tempo de Reação , Ansiedade , Motivação
5.
Psychol Res ; 88(2): 417-437, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37819500

RESUMO

Some studies have suggested that emotion-associated features might influence attentional capture. However, demonstrating valence-dependent distractor interference has proven challenging, possibly due to the neglect of individuals' color-valence preferences in standard, averaged reaction-time (RT) measures. To address this, we investigated valence-driven attentional-capture using an association phase in which emotionally neutral vs. positive-feedback photographs were paired with two alternative target colors, red vs. green. This was followed by a test phase requiring participants to search for a pop-out shape target in the presence or absence of an emotion-associated color. In Experiments 1 and 2, this color could only appear in a distractor, while in Experiment 3, it appeared in the target. Analyzing the standard, averaged RT measures, we found no significant valence association or valence-modulated attentional capture. However, correlational analyses revealed a positive relationship between individual participants' color-valence preference during the association phase and their valence-based effect during the test phase. Moreover, most individuals favored red over green in the association phase, leading to marked color-related asymmetries in the average measures. Crucially, the presence of the valence-preferred color anywhere in the test display facilitated RTs. This effect persisted even when the color appeared in one of the distractors (Experiments 1 and 2), at variance with this distractor capturing attention. These findings suggest that task-irrelevant valence-preferred color signals were registered pre-attentively and boosted performance, likely by raising the general (non-spatial) alertness level. However, these signals were likely kept out of attentional-priority computation to prevent inadvertent attentional capture.


Assuntos
Atenção , Emoções , Humanos , Tempo de Reação , Percepção de Cores
6.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38037371

RESUMO

Our perception and decision-making are susceptible to prior context. Such sequential dependence has been extensively studied in the visual domain, but less is known about its impact on time perception. Moreover, there are ongoing debates about whether these sequential biases occur at the perceptual stage or during subsequent post-perceptual processing. Using functional magnetic resonance imaging, we investigated neural mechanisms underlying temporal sequential dependence and the role of action in time judgments across trials. Participants performed a timing task where they had to remember the duration of green coherent motion and were cued to either actively reproduce its duration or simply view it passively. We found that sequential biases in time perception were only evident when the preceding task involved active duration reproduction. Merely encoding a prior duration without reproduction failed to induce such biases. Neurally, we observed activation in networks associated with timing, such as striato-thalamo-cortical circuits, and performance monitoring networks, particularly when a "Response" trial was anticipated. Importantly, the hippocampus showed sensitivity to these sequential biases, and its activation negatively correlated with the individual's sequential bias following active reproduction trials. These findings highlight the significant role of memory networks in shaping time-related sequential biases at the post-perceptual stages.


Assuntos
Percepção do Tempo , Humanos , Percepção do Tempo/fisiologia , Memória/fisiologia , Sinais (Psicologia) , Imageamento por Ressonância Magnética , Julgamento , Percepção Visual/fisiologia
7.
Proc Natl Acad Sci U S A ; 120(43): e2303763120, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37844238

RESUMO

Perceptual learning is the ability to enhance perception through practice. The hallmark of perceptual learning is its specificity for the trained location and stimulus features, such as orientation. For example, training in discriminating a grating's orientation improves performance only at the trained location but not in other untrained locations. Perceptual learning has mostly been studied using stimuli presented briefly while observers maintained gaze at one location. However, in everyday life, stimuli are actively explored through eye movements, which results in successive projections of the same stimulus at different retinal locations. Here, we studied perceptual learning of orientation discrimination across saccades. Observers were trained to saccade to a peripheral grating and to discriminate its orientation change that occurred during the saccade. The results showed that training led to transsaccadic perceptual learning (TPL) and performance improvements which did not generalize to an untrained orientation. Remarkably, however, for the trained orientation, we found a complete transfer of TPL to the untrained location in the opposite hemifield suggesting high flexibility of reference frame encoding in TPL. Three control experiments in which participants were trained without saccades did not show such transfer, confirming that the location transfer was contingent upon eye movements. Moreover, performance at the trained location, but not at the untrained location, was also improved in an untrained fixation task. Our results suggest that TPL has both, a location-specific component that occurs before the eye movement and a saccade-related component that involves location generalization.


Assuntos
Movimentos Sacádicos , Percepção Visual , Humanos , Aprendizagem , Movimentos Oculares , Retina , Aprendizagem por Discriminação , Estimulação Luminosa
8.
Sci Rep ; 13(1): 18624, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903860

RESUMO

How we perceive a visual stimulus can be influenced by its surrounding context. For example, the presence of a reference skews the perception of a similar feature in a stimulus, a phenomenon called reference repulsion. Ongoing research so far remains inconclusive regarding the stage of visual information processing where such repulsion occurs. We examined the influence of a reference on late visual processing. We measured the repulsion effect caused by an orientation reference presented after an orientation ensemble stimulus. The participants' reported orientations were significantly biased away from the post-stimulus reference, displaying typical characteristics of reference repulsion. Moreover, explicit discrimination choices between the reference and the stimulus influenced the magnitudes of repulsion effects, which can be explained by an encoding-decoding model that differentiates the re-weighting of sensory representations in implicit and explicit processes. These results support the notion that reference repulsion may arise at a late decision-related stage of visual processing, where different sensory decoding strategies are employed depending on the specific task.


Assuntos
Cognição , Percepção Visual , Humanos , Viés , Estimulação Luminosa
9.
Exp Brain Res ; 241(8): 2081-2096, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37460622

RESUMO

Despite having relatively accurate timing, subjective time can be influenced by various contexts, such as stimulus spacing and sample frequency. Several electroencephalographic (EEG) components have been associated with timing, including the contingent negative variation (CNV), offset P2, and late positive component of timing (LPCt). However, the specific role of these components in the contextual modulation of perceived time remains unclear. In this study, we conducted two temporal bisection experiments to investigate this issue. Participants had to judge whether a test duration was close to a short or long standard. Unbeknownst to them, we manipulated the stimulus spacing (Experiment 1) and sample frequency (Experiment 2) to create short and long contexts while maintaining consistent test ranges and standards across different sessions. The results revealed that the bisection threshold shifted towards the ensemble mean, and both CNV and LPCt were sensitive to context modulation. In the short context, the CNV exhibited an increased climbing rate compared to the long context, whereas the LPCt displayed reduced amplitude and latency. These findings suggest that the CNV represents an expectancy wave preceding a temporal decision process, while the LPCt reflects the decision-making process itself, with both components influenced by the temporal context.


Assuntos
Percepção do Tempo , Humanos , Percepção do Tempo/fisiologia , Eletroencefalografia , Variação Contingente Negativa/fisiologia , Fatores de Tempo
10.
Psychophysiology ; 60(12): e14375, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37417320

RESUMO

Singleton distractors may inadvertently capture attention, interfering with the task at hand. The underlying neural mechanisms of how we prevent or handle distractor interference remain elusive. Here, we varied the type of salient distractor introduced in a visual search task: the distractor could be defined in the same (shape) dimension as the target, a different (color) dimension, or a different (tactile) modality (intra-dimensional, cross-dimensional, and, respectively, cross-modal distractor, all matched for physical salience); and besides behavioral interference, we measured lateralized electrophysiological indicators of attentional selectivity (the N2pc, Ppc, PD , CCN/CCP, CDA, and cCDA). The results revealed the intra-dimensional distractor to produce the strongest reaction-time interference, associated with the smallest target-elicited N2pc. In contrast, the cross-dimensional and cross-modal distractors did not engender any significant interference, and the target-elicited N2pc was comparable to the condition in which the search display contained only the target singleton, thus ruling out early attentional capture. Moreover, the cross-modal distractor elicited a significant early CCN/CCP, but did not influence the target-elicited N2pc, suggesting that the tactile distractor is registered by the somatosensory system (rather than being proactively suppressed), without, however, engaging attention. Together, our findings indicate that, in contrast to distractors defined in the same dimension as the target, distractors singled out in a different dimension or modality can be effectively prevented to engage attention, consistent with dimension- or modality-weighting accounts of attentional priority computation.


Assuntos
Atenção , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Atenção/fisiologia , Tempo de Reação/fisiologia , Fenômenos Eletrofisiológicos , Percepção Visual/fisiologia
11.
Psychophysiology ; 60(10): e14351, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37277926

RESUMO

A salient distractor interferes less with visual search if it appears at a location where it is likely to occur, referred to as distractor-location probability cueing. Conversely, if the current target appears at the same location as a distractor on the preceding trial, search is impeded. While these two location-specific "suppression" effects reflect long-term, statistically learnt and short-term, inter-trial adaptations of the system to distractors, it is unclear at what stage(s) of processing they arise. Here, we adopted the additional-singleton paradigm and examined lateralized event-related potentials (L-ERPs) and lateralized alpha (8-12 Hz) power to track the temporal dynamics of these effects. Behaviorally, we confirmed both effects: reaction times (RTs) interference was reduced for distractors at frequent versus rare (distractor) locations, and RTs were delayed for targets that appeared at previous distractor versus non-distractor locations. Electrophysiologically, the statistical-learning effect was not associated with lateralized alpha power during the pre-stimulus period. Rather, it was seen in an early N1pc referenced to the frequent distractor location (whether or not a distractor or a target occurred there), indicative of a learnt top-down prioritization of this location. This early top-down influence was systematically modulated by (competing) target- and distractor-generated bottom-up saliency signals in the display. In contrast, the inter-trial effect was reflected in an enhanced SPCN when the target was preceded by a distractor at its location. This suggests that establishing that an attentionally selected item is a task-relevant target, rather than an irrelevant distractor, is more demanding at a previously "rejected" distractor location.


Assuntos
Atenção , Aprendizagem , Humanos , Atenção/fisiologia , Aprendizagem/fisiologia , Tempo de Reação/fisiologia , Potenciais Evocados/fisiologia , Sinais (Psicologia)
12.
J Exp Psychol Hum Percept Perform ; 49(5): 709-724, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37261775

RESUMO

Static statistical regularities in the placement of targets and salient distractors within the search display can be learned and used to optimize attentional guidance. Whether statistical learning also extends to dynamic regularities governing the placement of targets and distractors on successive trials remains controversial. Here, we applied the same dynamic cross-trial regularity-one-step shift of the critical item in clockwise/counterclockwise direction-to either the target or a distractor. In two experiments, we found and replicated robust learning of the predicted target location: processing of the target at this location was facilitated, compared to random target placement. But we found little evidence of proactive suppression of the predictable distractor location-even in a close replication of Wang et al. (2021), who had reported a dynamic distractor suppression effect. Facilitation of the predictable target location was associated with explicit awareness of the dynamic regularity, whereas participants showed no awareness of the distractor regularity. We propose that this asymmetry arises because, owing to the target's central role in the task set, its location is explicitly encoded in working memory, enabling the learning of dynamic regularities. In contrast, the distractor is not explicitly encoded; so, statistical learning of dynamic distractor locations is more precarious. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Atenção , Aprendizagem , Humanos , Memória de Curto Prazo , Tempo de Reação
13.
Psychon Bull Rev ; 30(6): 2210-2218, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37291447

RESUMO

Despite the crucial role of complex temporal sequences, such as speech and music, in our everyday lives, our ability to acquire and reproduce these patterns is prone to various contextual biases. In this study, we examined how the temporal order of auditory sequences affects temporal reproduction. Participants were asked to reproduce accelerating, decelerating or random sequences, each consisting of four intervals, by tapping their fingers. Our results showed that the reproduction and the reproduction variability were influenced by the sequential structure and interval orders. The mean reproduced interval was assimilated by the first interval of the sequence, with the lowest mean for decelerating and the highest for accelerating sequences. Additionally, the central tendency bias was affected by the volatility and the last interval of the sequence, resulting in a stronger central tendency in the random and decelerating sequences than the accelerating sequence. Using Bayesian integration between the ensemble mean of the sequence and individual durations and considering the perceptual uncertainty associated with the sequential structure and position, we were able to accurately predict the behavioral results. The findings highlight the critical role of the temporal order of a sequence in temporal pattern reproduction, with the first interval exerting greater influence on mean reproduction and the volatility and the last interval contributing to the perceptual uncertainty of individual intervals and the central tendency bias.


Assuntos
Música , Percepção do Tempo , Humanos , Teorema de Bayes , Percepção Auditiva , Incerteza
14.
J Cogn Neurosci ; 35(4): 543-570, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36735602

RESUMO

Redundant combination of target features from separable dimensions can expedite visual search. The dimension-weighting account explains these "redundancy gains" by assuming that the attention-guiding priority map integrates the feature-contrast signals generated by targets within the respective dimensions. The present study investigated whether this hierarchical architecture is sufficient to explain the gains accruing from redundant targets defined by features in different modalities, or whether an additional level of modality-specific priority coding is necessary, as postulated by the modality-weighting account (MWA). To address this, we had observers perform a visuo-tactile search task in which targets popped out by a visual feature (color or shape) or a tactile feature (vibro-tactile frequency) as well as any combination of these features. The RT gains turned out larger for visuo-tactile versus visual redundant targets, as predicted by the MWA. In addition, we analyzed two lateralized event-related EEG components: the posterior (PCN) and central (CCN) contralateral negativities, which are associated with visual and tactile attentional selection, respectively. The CCN proved to be a stable somatosensory component, unaffected by cross-modal redundancies. In contrast, the PCN was sensitive to cross-modal redundancies, evidenced by earlier onsets and higher amplitudes, which could not be explained by linear superposition of the earlier CCN onto the later PCN. Moreover, linear mixed-effect modeling of the PCN amplitude and timing parameters accounted for approximately 25% of the behavioral RT variance. Together, these behavioral and PCN effects support the hierarchy of priority-signal computation assumed by the MWA.


Assuntos
Atenção , Tato , Humanos
15.
Learn Behav ; 51(4): 349-350, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36581781

RESUMO

Is there sufficient evidence to make a decision, or has enough time passed to justify making a decision? According to Ofir and Landau (2022, Current Biology: CB, 32[18], 4093-4100.e6), these two questions are closely related: brain activity measured by EEG at the offset of stimulus presentation predicts the behavioral temporal decision, being influenced by the current context, and reflecting the relative distance to a decision threshold which is also context dependent.


Assuntos
Tomada de Decisões , Animais , Tempo de Reação
16.
J Exp Psychol Hum Percept Perform ; 48(11): 1250-1278, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107665

RESUMO

Salient but task-irrelevant distractors interfere less with visual search when they appear in a display region where distractors have appeared more frequently in the past ("distractor-location probability cuing"). This effect could reflect the (re-)distribution of a global, limited attentional "inhibition resource." Accordingly, changing the frequency of distractor appearance in one display region should also affect the magnitude of interference generated by distractors in a different region. Alternatively, distractor-location learning may reflect a local response (e.g., "habituation") to distractors occurring at a particular location. In this case, the local distractor frequency in one display region should not affect distractor interference in a different region. To decide between these alternatives, we conducted three experiments in which participants searched for an orientation-defined target while ignoring a more salient orientation distractor that occurred more often in one versus another display region. Experiment 1 varied the ratio of distractors appearing in the frequent versus rare regions (60/40-90/10), with a fixed global distractor frequency. The results revealed the probability-cuing effect to increase with increasing probability ratio. In Experiments 2 and 3, one ("test") region was assigned the same local distractor frequency as in one of the conditions of Experiment 1, but a different frequency in the other region-dissociating local from global distractor frequency. Together, the three experiments showed that distractor interference in the test region was not significantly influenced by the frequency in the other region, consistent with purely local learning. We discuss the implications for theories of statistical distractor-location learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Assuntos
Atenção , Aprendizagem , Humanos , Atenção/fisiologia , Aprendizagem/fisiologia , Inibição Psicológica , Sinais (Psicologia) , Probabilidade , Tempo de Reação/fisiologia
17.
J Cogn Neurosci ; 34(9): 1702-1717, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35704553

RESUMO

Using a combination of behavioral and EEG measures in a tactile odd-one-out search task with collocated visual items, we investigated the mechanisms underlying facilitation of search by repeated (vs. nonrepeated) spatial distractor-target configurations ("contextual cueing") when either the tactile (same-modality) or the visual array (different-modality) context was predictive of the location of the tactile singleton target. Importantly, in both conditions, the stimulation was multisensory, consisting of tactile plus visual items, although the target was singled out in the tactile modality and so the visual items were task-irrelevant. We found that when the predictive context was tactile, facilitation of search RTs by repeated configurations was accompanied by, and correlated with, enhanced lateralized ERP markers of pre-attentive (N1, N2) and, respectively focal-attentional processing (contralateral delay activity) not only over central ("somatosensory"), but also posterior ("visual") electrode sites, although the ERP effects were less marked over visual cortex. A similar pattern-of facilitated RTs and enhanced lateralized (N2 and contralateral delay activity) ERP components-was found when the predictive context was visual, although the ERP effects were less marked over somatosensory cortex. These findings indicate that both somatosensory and visual cortical regions contribute to the more efficient processing of the tactile target in repeated stimulus arrays, although their involvement is differentially weighted depending on the sensory modality that contains the predictive information.


Assuntos
Percepção do Tato , Tato , Atenção/fisiologia , Sinais (Psicologia) , Humanos , Córtex Somatossensorial/fisiologia , Tato/fisiologia , Percepção do Tato/fisiologia
18.
Sci Rep ; 12(1): 10746, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35750891

RESUMO

Perception of magnitudes such as duration or distance is often found to be systematically biased. The biases, which result from incorporating prior knowledge in the perceptual process, can vary considerably between individuals. The variations are commonly attributed to differences in sensory precision and reliance on priors. However, another factor not considered so far is the implicit belief about how successive sensory stimuli are generated: independently from each other or with certain temporal continuity. The main types of explanatory models proposed so far-static or iterative-mirror this distinction but cannot adequately explain individual biases. Here we propose a new unifying model that explains individual variation as combination of sensory precision and beliefs about temporal continuity and predicts the experimentally found changes in biases when altering temporal continuity. Thus, according to the model, individual differences in perception depend on beliefs about how stimuli are generated in the world.


Assuntos
Individualidade , Viés , Humanos
19.
Atten Percept Psychophys ; 84(4): 1114-1129, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35437702

RESUMO

Repeatedly presenting a target within a stable search array facilitates visual search, an effect termed contextual cueing. Previous solo-performance studies have shown that successful acquisition of contextual memories requires explicit allocation of attentional resources to the task-relevant repeated contexts. By contrast, repeated but task-irrelevant contexts could not be learned when presented together with repeated task-relevant contexts due to a blocking effect. Here we investigated if such blocking of context learning could be diminished in a social context, when the task-irrelevant context is task-relevant for a co-actor in a joint action search mode. We adopted the contextual cueing paradigm and extended this to the co-active search mode. Participants learned a context-cued subset of the search displays (color-defined) in the training phase, and their search performance was tested in the transfer phase, where previously irrelevant and relevant subsets were swapped. The experiments were conducted either in a solo search mode (Experiments 1 and 3) or in a co-active search mode (Experiment 2). Consistent with the classical contextual cueing studies, contextual cueing was observed in the training phase of all three experiments. Importantly, however, in the "swapped" test session, a significant contextual cueing effect was manifested only in the co-active search mode, not in the solo search mode. Our findings suggest that social context may widen the scope of attention, thus facilitating the acquisition of task-irrelevant contexts.


Assuntos
Atenção , Sinais (Psicologia) , Humanos , Aprendizagem , Tempo de Reação
20.
Psychophysiology ; 59(7): e14025, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35141899

RESUMO

Visual search is speeded when a target item is positioned consistently within an invariant (repeatedly encountered) configuration of distractor items ("contextual cueing"). Contextual cueing is also observed in cross-modal search, when the location of the-visual-target is predicted by distractors from another-tactile-sensory modality. Previous studies examining lateralized waveforms of the event-related potential (ERP) with millisecond precision have shown that learned visual contexts improve a whole cascade of search-processing stages. Drawing on ERPs, the present study tested alternative accounts of contextual cueing in tasks in which distractor-target contextual associations are established across, as compared to, within sensory modalities. To this end, we devised a novel, cross-modal search task: search for a visual feature singleton, with repeated (and nonrepeated) distractor configurations presented either within the same (visual) or a different (tactile) modality. We found reaction times (RTs) to be faster for repeated versus nonrepeated configurations, with comparable facilitation effects between visual (unimodal) and tactile (crossmodal) context cues. Further, for repeated configurations, there were enhanced amplitudes (and reduced latencies) of ERPs indexing attentional allocation (PCN) and postselective analysis of the target (CDA), respectively; both components correlated positively with the RT facilitation. These effects were again comparable between uni- and crossmodal cueing conditions. In contrast, motor-related processes indexed by the response-locked LRP contributed little to the RT effects. These results indicate that both uni- and crossmodal context cues benefit the same, visual processing stages related to the selection and subsequent analysis of the search target.


Assuntos
Atenção , Percepção Visual , Atenção/fisiologia , Sinais (Psicologia) , Humanos , Aprendizagem , Tempo de Reação , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...